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Abstract- -A higher-order shell theory is developed for elastodynamic analysis of orthotropic shells.
The theory accounts for all basic deformations including transverse shear and transverse normal
strains and stresses. The theory is developed in orthogonal curvilinear coordinates in which the
reference surface components of the displacement vector vary linearly through the thickness while
the transverse displacement is parabolic. Transverse shear and transverse normal strains are for
mulated to satisfy physical traction conditions at the top and bottom shell surfaces, and are also
made least-squares compatible with the corresponding strains that are derived directly from the
strain-displacement relations of three-dimensional elasticity. [n these variational statements of strain
compatibility. transverse shear and transverse normal correction factors are introduced, and are
determined from dynamic considerations in the manner originally proposed by Mindlin. Equations
of motion and associated engineering (Poisson) boundary conditions are derived from a three
dimensional variational principle. An important feature of the present theory is the requirement of
only simple CO and C I continuity for the shell kinematic variables. This aspect makes the theory
particularly attractive for the development of efficient shell finite elements suitable for general
purpose finite element analysis of thick shell structures. Analytical solutions for the free vibration
of isotropic and orthotropic cylindrical shells are obtained for a wide range of thickness/radius and
thickness/wavelength ratios and found to be in close agreement with the exact elasticity solutions.
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surface metrics (Lame parameters)
shell mem brane rigidities
shell membrane-bending coupling rigidities
clastic stiffness coefficients
shell bending rigidities
shell transverse shear rigidities
the class of continuous functions possessing discontinuous derivatives at element inter
faces
the class of continuous functions that arc discontinuous at element interfaces
inertial coefficients
axial half wavelength
stiffness matrix of cylindrical shell
mass matrix of cylindrical shell
cylindrical shell radius
shell thickness
transverse shear correction factors
transverse normal correction factors
axial and circumferential wave numbers
midplane displacement along (f.1 and :x, directions
orthogonal displacement components
components of the transverse displacement
cylindrical coordinates
time variable
normalized frequency
variational operator
strain and curvature components
bending cross-sectional rotations
dimensionless thickness coordinate
stress components
nmiL
orthogonal curvilinear coordinates
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material mass density
circular frequency
differentiation with respect to time
partial differentiation with respect to :I.,

I. INTRODUCTION

Thick-section composite laminates have found numerous structural applications in the
areas of civil, aerospace and marine structural designs. Many of these structures can be
classified as thick shells-the shells in which the thickness dimension is the same order of
magnitude as the radii of curvature. Given these dimensional relations and, additionally,
the consideration of the polymer-matrix graphite-fiber material constituents, such shells
may exhibit significant transverse shear deformations effects. In addition, transverse normal
deformations need also be accounted, especially in the areas of stress concentration and
those regions where the span of loading is comparable to the thickness dimension. These
transverse effects are known to be pronounced in high-frequency, short-wavelength
dynamics.

Considering the fact that a vast majority of structural analysis today is performed with
the use of general-purpose finite element codes, it becomes rather apparent that there is a
need for a simple and accurate higher-order shell theory that is amenable to finite element
approximations. Such a theory must take proper account of transverse shear and transverse
normal deformations-the type of thickness deformations that can be significant in the
response of thick shell structures to low-velocity impact and, in dynamics, high-frequency
excitations.

The classical two-dimensional theories [e.g. see Love (1888) ; Naghdi (1956) ; Sanders
(1959); Koiter (1960) ; Ambartsumyan (1964) ; Reissner and Stavsky (1961) ; Dong et al.
(1962)] are governed by the Kirchhoff-Love assumption of negligible transverse shear and
transverse normal deformations. They are known to provide adequate predictions of all
response quantities in the elastostatic regime of thin shells; in elastodynamics, in addition
to the thinness requirement, the practical range of applicability of the classical theory is
restricted to low-frequency (long-wavelength) excitations. When applied to relatively thick
shells and those subjected to high-frequency excitation, however, significant errors may
result. This is generally true for homogeneous isotropic materials, and especially true for
laminated composites which exhibit relatively weak stiffness properties in the direction
transverse to the fiber orientation. In the latter circumstances, rather significant defor
mations may result in the transverse shear and normal directions, and the neglect of these
effects in the approximate theory may no longer be appropriate.

The first-order shear deformation theories account for transverse shear deformation,
yet they neglect the effect of transverse normal deformation [e.g. see Reissner (1944, 1945,
1985); Mindlin (1951); Dong and Tso (1972); Dong and Chun (1992); Reddy (1989);
Khdeir et at. (1989)]. These two-dimensional theories have been used widely in the analysis
of both homogeneous and composite shells because their applicability extends further into
the moderately thick regime and higher-frequency dynamics. They also proved to be
particularly useful in the realm of finite element approximations (Hughes, 1987). The major
stimulus here is the requirement of lower-order continuity for the displacement variables.
For these reasons, first-order shear deformation theories are employed almost exclusively
in general-purpose commercial and research finite element codes.

Various higher-order theories have been proposed for the analysis of thick homo
geneous and laminated shells. The majority of such theories provide higher-order dis
placement approximations to improve the inplane response and stress predictions, yet they
neglect the effect of transverse normal deformations [see e.g. Reddy and Liu (1985);
Whitney and Sun (1974); Di Sciuva (1987); Doxsee (1989)]. Other higher-order theories
include the transverse normal effect but are penalized with a higher degree of complexity
such as higher-order boundary conditions, a large number of equations of motion (equi
librium), and higher-order continuity requirements for finite element approximations [see
e.g. Hildebrand et at. (1949); Naghdi (1957); Lo et at. (1977); Voyiadjis and Shi (1991)].
For these reasons, higher-order theories have been employed to a much lesser degree and
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have not found their way in general-purpose finite element programs. Only in certain
relatively simple cases have three-dimensional elasticity solutions been successfully obtained
[e.g. Nelson et al. (1971) ; Armenakas et al. (1969) ; Mirsky (1964, 1966)].

The main focus of this effort is to derive an accurate general shell theory which is
particularly suited for finite element analysis and is applicable for the elastodynamics of
thin and thick orthotropic shells. The approach is an extension of the {I, 2}-order plate
theory of Tessler (1991, 1993) which accounts for transverse shear and transverse normal
deformations, has a wide applicability range, possesses the simplicity of the first-order shear
deformation theory, and is ideally suited for general-purpose finite element analysis. The
present shell formulation may also serve as a foundation for a laminated composite theory
following recent developments in plate theory [refer to Tessler and Saether (1991) ; Tessler
et al. (1992, 1995)].

The proposed theory is evaluated via an analytic solution for the free vibration of
isotropic and orthotropic cylindrical shells. Natural frequencies of vibration are determined
for a wide range of geometric parameters, and the results are compared with the cor
responding three-dimensional elasticity solutions.

2. FOUNDATION OF iI. 2]-ORDER SHELL THEORY

Let (0: 10 0:2, () denote an orthogonal curvilinear coordinate system of the shell of
thickness 2h, whereo:! and iX2 are the parametric, orthogonal lines of principal curvature of
the shell reference midsurface, and (E [- h, h] is the normal to the midsurface which is
positioned at ( = O. The principal radii of curvature of the reference surface are R I and R2

(see Fig. I). Also, let A! and A 2 denote the surface metrics of the shell element which are
determined as

A ~ = r I . r I. A ~ = r2 . r 2. (1)

where r is the position vector ofa point on the middle surface of the shell; hence, A I = A I (iX l ,

i(2) and A 2 = A 2(0:1. o:J. To make the development meaningful for application to composite
materials, the theory is carried out for an elastic. orthotropic material. It is further assumed
that the deformations of the shell are small.
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The displacement vector defined in the orthogonal curvilinear shell coordinate frame
can be written as

where ii, i 2 and n are the unit vectors along :Xl' a2' and (, respectively.
Following the approach of a {I, 2}-order plate theory of Tessler (1991, 1993), the

displacement components, which allow a three-dimensional deformation state including
transverse shear and transverse normal deformations, are expanded in terms of the dimen
sionless thickness coordinate ~ = (jhE [-I, I] using seven kinematic variables,
u = (u, U, W, 01, O2, W h W2), as

U, (:XI' a2, (, t) = u(al' C(2' t) +h~OI (ai' :X2' t)

U2(':X I,:X2,(,t) = V(!Y.I'!Y.2,t)+h~e2(:X":X2,t)

u,(a l ,!Y.2,(,t) = W(:XI'!Y.2,t)+~wl(:XI,a2,t)+(~2+C)W2(!Y.I':X2,t), (3)

where t denotes time; C is a constant whose value is established by letting W be the weighted
average transverse deflection as in Reissner's first-order theory, i.e.

(4)

The fulfilment of this condition requires that C = -1/5 (also, see Remark I). As a result,
the transverse displacement computed at the shell midsurface is defined by two dependent
variables. i.e.

(5)

As in the first-order theory, the variables u, v, eh and e2 can be interpreted as the weighted
average quantities,

(6)

The higher-order variables, WI and W 2, can be thought of as the normalized strain and
curvature in the thickness direction, i.e.

(7)

The three-dimensional Hooke's law is assumed to govern the relationship between stresses
and strains, which in matrix form may be written as

(JI CII C I2 C I .1 0 0 C[6 8 1

(J2 C 12 C 22 C2.1 0 0 C 26 82

(J" C I .1 C2.1 C,,, 0 0 C.16 8" (8)
T 1" 0 0 0 C44 C45 0 /2/1

TIll 0 0 0 C45 C 55 0 Y[n

T 12 C I6 C26 C'6 0 0 C66 (12

where the C,i denote the elastic stiffness coefficients for an orthotropic material whose
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principal directions are not, in general, coincident with the shell coordinates 0(1 and 0(2,

hence the presence of the shear coupling terms, C'6 (i = I, 2, 3) and C45 •

The conventional computation of strains proceeds by introducing the assumed dis
placements into the strain-displacement relations of three-dimensional elasticity theory [e.g.
see Kraus (1967)]. This gives rise to the following strain components.

The strains acting in the 0(1 and 0(2 coordinate directions,

ei = [C;?+h¢K:)+h¢f.~/R,+h2(!;2+C)K~/R,]/L, (i= 1,2)

/IZ = (/3\J+h¢{3'\)/L\ +({3~+hW;)/Lz, (9)

where L, = I +h¢/R, (i = 1,2) and

{3~ = 8z.\/A I-8 I AI.2/A\A z

{3; = 8I.z/Az-8zAz.\/AIA2'

The transverse shear. (//l(i = 1,2), and transverse normal, ell' strains,

where

and

(10)

(II)

(12)

Examining the distribution of the transverse shear strains in the thickness direction, as the
shell approaches its thin limit 2h ---> 0, reveals the fulfillment of the limiting conditions L i -+

I and wj .i « Ili' Under these constraints, the shear strains are practically uniform across the
shell thickness, i.e. Yin ---> Il? Hence, the conditions of zero shear stresses on the bounding
shell faces cannot be achieved with these displacement assumptions. Further, associated
with each shear strain, a correction factor needs to be specified to achieve agreement with
the classical theory for the class of thin shell problems. This latter aspect is consistent with
the shear correction notion in the first-order plate theory, Mindlin (1951). Also, as observed
by Mindlin and Medick (1958) in the context of inplane plate vibrations, the thickness
motion response, which is characterized by the linear thickness variation of the transverse
normal strain, c'" needs to be corrected. This is due to the sinusoidal character of the exact
en distribution which cannot be modeled with sufficient accuracy by the linear variation even
for the lowest thickness-stretch mode. Here, two correction factors need to be specified-one
associated with the constant and the other with the linear components in Cn- The values of



3242 A. Tessler el al.

these corrections factors in the context of a {1 ,2} -order plate theory have been determined
by Tessler et al. (1995), who employed the approaches of Mindlin (1951) and Mindlin and
Medick (1958).

Rewriting eqns (11) and (12) with the use of transverse shear k i (i = 1,2) and normal
k i (i = 3,4) correction factors results in the corrected transverse strains,

(13)

(14)

Once the strains are derived from the displacements in the manner described, the
conventional displacement approach for elastodynamics is to employ Hamilton's principle.
For this order of displacement approximation, Hamilton's principle gives rise to a set of
seven second-order partial differential equations of motion and a set of variationally
consistent boundary conditions. Such a theory is formally 14th-order, as are those derived
in Hildebrand et al. (1949) and Naghdi (1957), and possesses higher-order boundary
conditions associated with the WI and W2 variables. Also, with the transverse shear strains
defined by eqn (13), the associate shear stresses cannot fulfill zero shear traction conditions
on the bounding shell surfaces. From the perspective of utilization of such a theory in a
general-purpose finite element code, the large number of variables and the appearance of
higher-order boundary conditions make it incompatible with the conventional, first-order
theory framework, involving three displacement and two rotation variables. This explains
the complete absence of higher-order theory shell elements in general-purpose finite element
codes.

The aforementioned deficiencies, however, can be overcome by formulating the shell
approximation in a multi-field manner, where in addition to the displacements, the trans
verse strains are also assumed independently. The manner in which this process is presently
formulated will yield a simplified and accurate shell theory that also fulfills the needs
of computational mechanics; that is a theory that is perfectly suited for finite element
approximation (also, see Remarks 2). In what follows, this approximation approach is
described.

We now propose an independent approximation of transverse shear strains of the
following form

(15)

where {in! are yet unknown coefficients dependent on (XI, 1Y.2 and t. Henceforth, the strains
superscribed with the asterisk will represent the independently assumed strains to distinguish
them from those derived directly from strain-displacement relations. The above assumptions
allow the selection of the {inj strain coefficients in such a way as to satisfy exactly the zero
shear equilibrium conditions on the top and bottom shell surfaces, i.e.

(16)

where Hooke's law, eqn (8), is used to obtain Tm in terms of (~. The two homogeneous
conditions for each shear stress determine two unknown coefficients for each shear strain
in eqn (15). The remaining coefficient in each assumed strain is determined from the
following variational statement in which {~, subject to the physical constraints, egn (16),
are made compatible across the shell thickness with the corresponding corrected shear
strains, eqn (13) ; this compatibility is enforced in the least-squares sense as,



Elastodynamic analysis of thick orthotropic shells

(i= 1,2),

3243

(17)

where the integrals are minimized with respect to the unknown expansion coefficients. The
resulting transverse shear strains take the simple form

Ski '(','* =-(I-c~)/(J;L (i= 1,2).
/1/1 4 _"'-1 i /

(18)

Note that the yt, strains are now defined exclusively in terms of the basic strain measures
f1? and they possess no WI and w, contributions; this is contrasted with those shear strains
which are conventionally derived from the strain-displacement relations (11) and (13).
The analytic and computational benefits of the transverse strains just derived are further
elucidated in Remark 3.

Similarly, an improved approximation for the transverse normal strain is introduced
by assuming a cubic thickness distribution as

1:'~(:XI,:x·,C,t) = I G'I,(:X I .:X1,t)('.
i 0

(19)

Alternatively, a cubic (In could have been assumed-the two approaches being entirely
equivalent for a homogeneous shell. The latter approach, however, has some advantages
when laminated composite materials are considered (Tessler, 1993) ; whereas, the implemen
tation of the former is somewhat more direct and simple.

To determine the unknown coefficients of the B,~ expansion, a homogeneous constraint
condition is imposed on the transverse normal stress gradient as

(20)

This condition is an exact statement of transverse normal equilibrium for plates, i.e.
when the initial curvatures are zero (Tessler, 1993), and it can only be regarded as an
approximation for curved shells [e.g. refer to Sokolnikoff (1956) for the exact form of
equilibrium equations in curvilinear coordinates]. It can further be argued that for shallow
shells this approximation may still be adequate both as an average representation of the
thickness stretch deformation as well as for computing the an stress. For deep shells,
however, the computation of an directly from Hooke's law is not expected to be accurate.
In these situations, an may be obtained by integrating the exact equilibrium equations of
three-dimensional elasticity theory-the procedure commonly used in recovering an from
classical and first-order theories. It is now worth pointing out that, as will be established in
Results and Discussion, the theory produces accurate predictions of vibrational frequencies
even for deep and very thick cylindrical shells. Since the accuracy of vibrational frequencies
depends on how well the shell response is approximated in the average sense, it is reasonable
to conclude that the enforcement of eqn (20) results in an adequate approximation of the
thickness stretch deformation even for deep shells.

The remaining expansion coefficients in eqn (19) are determined by forcing e: to be
least-squares compatible with the corrected Bn strain of eqn (14),

(21)

This yields
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where the Sf (j = 1,2, ... ,10) coefficients vary cubically with ~ and are also functions of the
C,f elastic constants (see Appendix A).

The complete kinematics of the shell can thus be expressed in terms of 12 reference
surface shell strain and curvature measures,

where (1:/1, D~ ,c;,I;), un, 1m and (flV, tl~) represent the normal, reference-surface shear and
transverse shear strains; (KV, K~, K;!) and (f3~, fJS) denote the changes in the normal and
twisting curvatures. The relationships of these quantities to the seven kinematic variables
are given in eqns (7), (10) and (II).

Accounting for all strain and stress components and assuming no body forces, the
equations of motion together with the natural boundary conditions are now derived by
applying the three-dimensional variational principle,

- r f (q,;u; Li Lj -q,; u, L; LnA 1A 2 dc<, dC<2
" x I :1 ~

- r r (f21 U 1+0'2U2+f2nU,)A1LI dC<1 d(]dt = 0,
"" 7.1 ~ . II

(24)

where the quantities superscribed with a bar refer to the prescribed edge values, and the
superscripts" + " and" - " respectively identify the appropriate quantities on the top and
the bottom shell surfaces; q,; and q,~ are the normal tractions prescribed on the top and
bottom bounding shell surfaces. Note that the first volume integral in eqn (24), which
represents the strain energy in Hamilton's principle, has features of a mixed formulation
the mixed aspect is due to the inclusion of the independently assumed transverse strains.
Unlike Reissner-type mixed formulations in which the assumed strains/stresses depend on
the respective strain or stress functions, the assumed strains in the present formulation are
functions of the displacement variables.

Integrating over the shell thickness results in the two-dimensional variational principle,

,r', {I f T T T }() J/" :2 S [N Go +M K o +Q Yo] del I dC<2 - K - We dt = 0,

where the vectors of stress resultants N, M and Q are given by

NT = [N[,N2,Nr"NI2,N2tl

M T
= [M

"
M 2 , M o ' M 12 , M 2 tl

(25)

(26)
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The stress resultants, expressed as integrated quantities of the stresses, are given in
Appendix B.
The kinetic energy, K. and the external work, We, have the form

K= ~f f [mo(u2+1;2+~i,2)+2Iml,(u8, +i'(2)+ h2m2(8i+8n
:l: I '2

+ 1112 ~d + (1114 - 2m2/5 +mo/25)~i'~

+ 2111,lhi', +2(m2-mo/5)wli'2

+ 2(m, - 111, /5)~i', li'2]A ,A 2det, det2 (27)

We=f J~ [Q,(11'+411'2/5)+Q2IfdA,A2det,det2+f (N 1u+N I2 V+M,(),+M,2()2
:XI '::!)'l

+Q,II'+Q"If, +Q'2w2)A2det2

+L(N2,U+N2V+M21()I+M2()2

+Q2W+Q211f, +Q22W2)A1 det" (28)

where

(29)

The resultants of prescribed edge tractions (Nij' Mij, Qi') and the mi (i = 0, I, ... ,4) inertial
coefficients are defined respectively in Appendices C and E.

The shell constitutive relations are expressed as

B
D
o

:]1::1-
G [Yo

(30)

where A = [Ad, 8 = [BiJ, D = [D,,J and G = [G i,] are defined in Appendix D.
Performing appropriate variations and integration by parts yields the seven equations

of motion,

(N,A 2), +(N2,A,)2+N,2AI.2-N2A2., +A,A 2Q,/R, = AIA2(moii+m,hijl)

(N'2 A 2) , + (N2A, h +N 2, A 2., - N, A 12 + A, A 2Q2/ R2 = A, A 2(m Ov+m j h82)

(Q, A 2)., + (Q2 A I h - (N, /R, + N 2/R 2)A, A 2-QIlA, A 2

(M, A 2)., + (M2, A')2 + M'2A 1.2 - M 2A 2.1
- A, A 2Q, = A I A 2(111,hii+m 2h28 j )

(M'2 A 2) , +(M2A,).2+M2,A2.,-M,Al.2-A,A2Q2 = A,A 2(m,hi'+m2h282)

- N,,/h +q2 = [111, ~r'+m21r', + (-111, /5 +ml)~ii2]

- M II /h 2+4q, 15 = [( -mo/5 +1112)11"+ (-m, /5 + m 1 ) Ii", + (1110/25 -2m2/5 +m4)~v2]

(31 )

and the Poisson-type boundary conditions that are consistent with the theory. The boundary
conditions along the :x, edge:
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N 1I = N21 or u=i1

N 2 = N2 or v=iJ

Q2 = Q2 or lV = l1J

M 11 = M21 or (JI = 81

M 1 = M 2 or (J2 = 82, (32)

The boundary conditions along the C(2 edge

N I =N I or u=i1

N I2 = N12 or v=iJ

QI =QI or W=W

M I2 = MI2 or (JI = 81

M , =M , or (J2 = 82

The variational principle also yields

Q21 = Q22 = 0 along C(I

QII=QIZ=O along C(2

(33)

(33a)

To satisfy conditions (33a), the fin and f ZII shear tractions must be of the following form

fin = fln(C(z)(I-~2)ILz

f ZII = fZII(C(I)(I-~2)ILI (34)

Remark I. Alternative procedure for determining the C coefficient
The C coefficient appearing in the assumed displacement (3) can be alternatively

determined from the least-squares statement (17) without the preceding enforcement of (4).
Thus, the fulfillment of condition (17) with C treated as an unknown constant, results in
the transverse shear strains which include terms associated with the gradients W2.i (i = 1,2).
In these expressions, if C is set to -liS, the WZ,i terms vanish identically, yielding the shear
strains ofeqn (18).

Remark 2. Finite element approximation aspects
The theory offers significant computational advantages as far as its finite element

approximation is concerned. The basic issue is the interelement continuity requirement for
kinematic variables associated with the theory. Here, the u, v, W, (JI and (J2 kinematic
variables, which are the same as in the first-order theory, need only be approximated with
CO-continuous shape functions; this is because their highest spatial derivatives appearing
in the variational principle (25) do not exceed order one. Further, since the variational
principle possesses no spatial gradients of the variables WI and W2' their finite element
approximations need only be C-'-continuous, i.e. these fields can be discontinuous along
finite element boundaries. With the latter assumptions, the WI and W2 variables can be
condensed out statically at the element level, thus giving rise to simple and computationally
efficient elements. Such finite elements, based on the predecessor {1,2} -order plate theory,
have been developed and successfully implemented in NASA's general-purpose finite
element code COMET (Stewart, 1989), and used as a user-supplied element in ABAQUS
(Hibbit et al., 1992).

Remark 3. Analytic simplicity characteristics
The absence of the Wl,i and W2,i gradients in the transverse shear strains and,

subsequently, in the variational principle, results in the following simplifying features of
the theory: (I) the resulting differential equations of motion are 10th order and not the
usual 14th order for a seven-variable theory [e.g. Hildebrand et al. (1949), Naghdi (1957)];
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and (2) the variationally derived boundary conditions are strictly of the Poisson type,
without the usual higher-order boundary conditions that are necessarily present in a 14th
order theory.

3. TRANSVERSE CORRECTION FACTORS

The shell theory is completed upon determining the appropriate values for the cor
rection factors k, (i = 1,4) introduced in the formulation. The approach is the same as in
the predecessor plate theory (Tessler et al., 1995); it follows Mindlin's approach (Mindlin,
1951), by considering the free vibration of an infinite orthotropic plate. First, cut-off
frequencies of the lowest thickness-shear modes computed from three-dimensional elasticj!Y
equations of motion and the present theory are matched, resulting in k l = k 2 = n/-/1O
(0.993). This value-which is nearly unity-implies an insignificant correction in shear and
differs from that of Mindlin's first-order theory correction of n/j12 (0.907). Analogously,
as in Mindlin and Medick (1958), cut-off frequencies for the lowest symmetric and anti
symmetric thickness-stretch modes obtained from three-dimensional elasticity theory and
the present theory are matched, resulting in the values k 3 = n/j12 (0.907) and
k 4 = n/JI7/252 (0.816). These correction factors will subsequently be used in the analysis
of general shells.

4. FREE VIBRATION OF CYLINDRICAL SHELLS

The present shell theory is evaluated by studying the free vibrations of isotropic and
orthotropic homogeneous cylindrical shells. For a cylindrical shell of radius a, the equations
of motion in terms of the displacement variables are obtained from eqn (31) by making use
of the shell constitutive relations (30) and, subsequently, transforming the general curvi
linear coordinates (ai' a2' 0 to the circular cylindrical coordinates (x, (J, 0, and by taking
into account the appropriate geometric relations

(35)

The seven equations of motion take the form

A II U. U + A 55uOO/a2 + (A 12 + A 54 )v'O/a+ B II (Jo,xx +

B5,(Jo.OO/a2+ (B 12 + B54)8,.xO/a+ A 12 w)a+ A 13 Wl.)h+ B I3 w2.)h2 = mou+ml hOo

(B 21 - aG'5)fJO.,!a- (Bn - aG44 )8"O/a2- A 22 w/a2- A 23 1',', /ah

-B2311'2/ah2 = molv+mlli"1 +( -mO/5+m 2)lv2]

(A 45 +A21 )u,o/a+ A 44Vxx + A n v,oo/a2+ (B45 +B21 )()o,xo/a+

B44 8x,x, + Bn(Jx.ooa2 + (An + G44 )w,O/a2+ An wl.o/ha+

B2311'2,O/h2a-G44(v-a8,)/a2 = mof+mlhOx
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- [A, I U, +A32 (VO +H')/a+ A" wl/h+ B31 Bo., +B32 Bdl /a+

B" H'2/h2]/h = m jl·P+m21-1'1 + (-mj /5 +m3)w2

For free vibration, the displacements are expanded in a modal infinite series as

x

u(x, e, t) = L Um" sin ax cos n8 eiw
/II

l1
'

111 = 11 = I

x.

vex, e, t) = L Vmn cos ,~x sin nO eiWIIIII
(

111 = fl = I

x.

w(x,B,t) = L W
nlll

cos ax cos nfJ e/{Umn (

111= 11 = 1

x

exex, e, t) = L ¢"'1/ cos ax sin ne eiUJ"",t

111= fl = I

x

eo(x, e, t) = L ljJ"'l/ sin o:x cos ne eiUJ"",t

HI = n = I

x

H'I (x, e, t) = L W;,,1/ cos ax cos ne e
iw

",,/

IJ/= 11 = I

x.

H'2(X, 0, t) = L W';'1/ cos ax cos nB ei<"",,,r (37)
III = 11 = I

For the special case n = 0, the displacement expansions are obtained by interchanging sin
ne and cos nB in eqn (37). Substituting eqn (37) into eqn (36), results in the matrix eigenvalue
equation

(38)

with

where the coefficients of the stiffness Key] and mass Meyl matrices are defined in
Appendix E.

The equations of motion (36) and the resulting eigenvalue equations (38) (also refer
to Appendix E) show that deformations through the thickness due to WI and W 2 couple
with the stretching and bending shell deformations. This coupling is expected to be more
pronounced in thick shells, and it is less significant in thin shells. Also, of particular interest
is the fact that the first five equations of motion reduce to those of the first-order Mindlin
type theory once the coupling terms associated with the WI and H'2 variables (i.e. the K i6

and K'7 (i = 1,2, ... ,5) stiffness and the M 3j (j = 6,7) mass terms, see Appendix E) are set
to vanish. In addition, these "reduced" equations yield results consistent with the classical
shell theory once the transverse shear rigidities Gu (i,j = 4,5) are set to infinity.
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Table 1. Normalized natural frequencies for homogeneous isotropic thin cylinders, 2h/a = 0.01
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2h:L Q, Q, Q, Q4

EXACT HOT EXACT HOT EXACT HOT EXACT HOT
-------------,,--- -- ------._-------"-

(111,11) = (1. I)
0.01 00046 0.0046 001069 0.01069 1.0001 10002 1.8706 1.8708
0.10 0.0160 0.0159 01001 0.1001 10050 1.0050 18498 18726
0.20 0.0577 0.0577 0.2000 0.2000 10/98 1.0198 1.8121 1.8779
0.40 0.1989 0.1986 0.4000 0.4000 1.0771 10771 1.7520 1.9020

(111.11) = (1. 3)
0.01 00026 0.0026 0.0142 0.0142 1.000] 1.0001 1.8709 1.8709
0.10 0.0160 0.0162 0.1005 0.1005 1005 1.005 1.8496 1.8726
0.20 00579 0.0584 0.2002 0.2002 1.0199 1.0199 18120 1.8779
0.40 0.1990 0.2003 0.4001 0.4001 1.0771 1077/ 1.7520 19021

Table , Normalized natural frequencies for homogeneous isotropic thick cylinders.
2h j {[ = 0.3

2h:L Q, Q, Q, Q4

EXACT HOT EXACT HOT EXACT HOT EXACT HOT
---------- -._--"-_._ ..- ------ --_.....__._----

(111,11) = (1.1)
0.01 0.0012 0.0012 0.0972 0.0972 1.0083 10086 1.8583 1.8730
0.10 0.0616 0.0616 o 1648 01648 1.0183 10185 1.8423 18746
020 0.1266 0.1269 0.2375 0.2375 1.0383 1.0382 1.8100 18800
0.40 0.2440 0.2459 0.4142 0.4142 10970 1.0967 1.7551 1.9041

(111.11) = (I. 3)
0.01 0.0957 0.0957 0.2875 0.2875 1.0455 1.0458 1.7865 1.8858
0.10 0.1064 0.1065 0.3095 0.3095 1.0517 1.0520 1.7812 1.8877
0.20 0.1455 0.1457 03613 0.3613 1.0692 1.0697 1.7681 1.8938
0.40 0.2792 0.2801 05018 0.5018 1.1303 11308 1.7439 19208

5. RESULTS AND DISCUSSION

The free vibrations of isotropic cylinders are studied first. Tables I and 2 summarize
selected natural frequencies for thin (2h/a = 0.0 I) and thick (2h!a = 0.3) isotropic cylinders
corresponding to the mode numbers (m, n) = (1, 1) and (m, n) = (1, 3), respectively. In
these tables, the frequencies are given in the range of thickness/length ratios of
0.01 ~ 2h/L ~ 0.40, For each set of modal numbers (rn, n) and the value of 2h/L, four
frequencies are furnished. The frequencies, OJ = OJ/OJref (i = 1,2,3,4) where
Wre! = nJGiPj2h, correspond, in the ascending order, to a fle~ural mode, associated with
large radial displacements; an axial shear mode, associated with large axial displacements;
a thickness-shear mode, associated with motions in the axial directions, and a thickness
stretch mode exhibiting predominantly radial displacements. The present shell theory results
are compared with those of three-dimensional elasticity theory (Armenakas et aI., 1969),
The results for the first three frequencies (ni, i = 1,2,3) are seen to be in excellent agreement
with the exact solutions for both sets of modal numbers and the entire range of 2hjL
examined. The 0 4 frequency corresponding to the thickness-stretch mode is predicted
accurately for thin and long shells; the shell theory tends to over estimate this frequency as
the shell becomes thick and/or short. The largest error in the thickness-stretch frequency is
about 10% corresponding to a short-thick cylinder (2h/ L = 0.40 and 2h/a = 0.3) and n = 3.
Note that in the classical, first-order, and many higher-order theories, the thickness-stretch
modes are suppressed entirely by virtue of the inextensibility assumption of the transverse
normal fiber; hence, the thickness-stretch modes cannot be predicted by means of such
formulations.

The second series of results concerns the axisymmetric vibrations of orthotropic cylin
ders, and these are summarized in Tables 3-5. Solutions are obtained for the aforementioned
modes n, (i = 1,2,3,4) corresponding to m = I and n = 0 (i.e. axisymmetric motion). Thick
cylinders with the 2h/a ratios of 0.25,0.5 and 1.0 are analysed for a variety of thickness-to
wavelength (2h/L) ratios. The vibration frequencies are normalized as 0, = OJjwref where
Wref = 2h.Jp/C,. The shell theory predictions are compared with the exact solutions
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Table 3. Normalized natural frequencies for homogeneous orthotropic topaz
cylinders (m, 11) = (1,0), 2h/a = 0.25

2h!L EXACT HOT HOT* FSDT CST
_._- ---,,--- --_.._-._---- .._---------.-

0,: Flexural mode
0.00 0.0000 0.0000 0.0000 0.0000 0.0000
0.01 0.0878 0.0878 0.0878 0.0897 0.8972
0.1 0.8958 0.8954 0.8957 0.9429 0.9429
0.2 1.7777 1.7744 1.7774 1.8735 1.8735
0.3 2.6325 2.6208 2.6352 2.8073 2.8073
0.4 3.3981 3.3718 3.4296 3.7417 3.7417
0.5 38859 3.8883 4.0645 4.6763 4.6763

0,: Breathing mode
0.00 0.3736 03736 0.3736 0.4060 0.4060
0.01 0.3738 0.3739 0.3739 0.4068 0.4068
0.1 0.3898 (U902 0.3897 0.4105 0.4121
0.2 0.6511 06471 06452 0.6690 0.7266
0.3 1.1681 1.1187 1.1163 1.1399 1.3733
0.4 17523 1.6786 1.6771 1.6951 2.2078
0.5 2.8023 2.2731 2.2740 2.2824 3.1426

OJ: Thickness·shear mode
0.00 3.1490 3.1498 31705 3.1498
0.01 3.1506 3.1515 3.1722 3.1517
0.1 3.3088 33110 3.3327 3.3319
0.2 3.7158 3.7221 3.7480 3.7975
0.3 4.2538 4.2663 4.3025 4.4232
0.4 4.8466 4.8721 4.9245 5.1364
0.5 5.4468 5.4847 5.5777 5.9023

0 4 : Thickness·stretch mode
0.00 4.5864 45726 5.0414
0.01 4.5853 45726 5.0415
0.1 4.5383 4.5810 5.0491
0.2 4.4461 4.6109 5.0752
0.3 4.4027 4.6808 5.1325
0.4 4.5244 4.8465 5.2575
0.5 4.9799 5.2559 5.5431

specifically formulated for axisymmetric vibrations of generally orthotropic cylindrical
shells (Mirsky, 1964). The exact solution is based on a Frobenius power-series solution to
the governing equations of three-dimensional elasticity; it demonstrates rapid convergence
for the very thick case 2h/a = 1. Convergence difficulties are, however, encountered for the
low 2h/a and high 2h/L ratios for which an asymptotic solution is developed, Mirsky (1966).
Both formulations presented by Mirsky (1964, 1966) have been implemented in this effort
in order to examine a wider range of shell geometric parameters and material properties
than the ones reported in the original references. The material properties of topaz are used
herein to compare with results contained in the original references. The material moduli
are given by:

Cl = 3005 Cc = 900 C l3 = 864

Cn = 3561 C23 = 1284 en = 2871

C44 = 1100 Css = 1357 C66 = 1330.

In Tables 3-5, comparisons are made with solutions based on the three-dimensional
elasticity theory (denoted as EXACT), the present higher-order theory with and without
the application of transverse correction factors (designated HOT and HOT*, respectively),
the first-order shear deformable theory (FSDT), and classical shell theory (CST), It is again
necessary to point out that the predictive capabilities of FSDT and CST are known to be
adequate in the range of low frequencies and small 2h/a ratios. The range of thickness-to
radius ratio that is examined, 2h/a ~ 0.25, falls into the category of thick shells for which
these two theories are generally not suitable. The comparison with FSDT and CST,
however, is useful in order to assertain quantitatively both the kind of error that is incurred
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Table 4. Normalized natural frequencies for homogeneous orthotropic topaz cylinders
(m,n) = (1,0), 2h/a = 0.5

2h/L EXACT HOT HOT* FSDT CST

ill : Flexural mode
0.00 0.0000 0.0000 0.0000 0.0000 0.0000
0.01 0.0879 0.0879 0.0879 0.0899 0.0899
0.1 0.9254 0.9254 0.9254 1.0000 1.0001
0.2 1.785 I 1.7828 1.7828 1.8857 1.8857
0.3 2.6394 2.6300 2.6435 2.8144 2.8144
0.4 3.4050 3.3865 3.4418 3.7468 3.7468
0.5 3.9106 3.9120 4.0849 4.6804 4.6804

il, : Breathing mode
0.00 0.7635 0.7638 0.7638 0.8187 0.8187
0.01 0.7635 0.7637 0.7638 0.8189 0.8189
0.1 0.7235 0.7241 0.7236 0.7349 0.7349
0.2 0.8842 0.8873 0.8848 0.9170 0.9461
0.3 1.2580 1.2617 1.2582 1.2884 1.4693
0.4 1.7728 1.7714 1.7686 1.7905 2.2435
0.5 2.3574 2.3395 2.3392 2.3492 3.1495

il, : Thickness-shear mode
0.00 3.0893t 3.1748 3.1957 3.1748
0.01 3. I731 t 3.1766 3.1975 3.1768
0.1 3.3335 3.3383 3.3603 3.3590
0.2 3.7436 3.7525 3.7791 3.8269
0.3 4.2823t 4.2985 4.3357 4.4528
0.4 4.8768t 4.9036 4.9590 5.1648
0.5 5.4770t 5.5196 5.6123 5.9291

il.: Thickness-stretch mode
0.00 4.6406t 4.5850 5.0538
0.01 4.6400t 4.5851 5.0539
0.1 4.5915t 4.5932 5.0612
0.2 4.4956t 4.6219 5.0864
0.3 4.4873t 4.6890 5.1415
0.4 4.7935t 4.8494 5.2618
0.5 4.9839t 5.2463 5.5395

tDenotes an asymptotic three-dimensional elasticity solution.
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with the use of such theories and the benefits of utilizing the present shell theory for the
analysis of thick shells. The results shown in the tables demonstrate highly accurate fre
quency predictions obtained with the present higher-order theory in the range of long
and short cylinders examined, The results are also consistent and demonstrate that, with
increasing 2h/a and 2h/L ratios, CST shows the greatest inaccuracy and, as noted previously,
it does not permit solutions for the thickness-shear and thickness-stretch modes, The FSDT,
in which thickness-stretch modes are intrinsical~suppressed and which makes use of
Mindlin's shear correction factors, k l = k 2 = rr./y' 12, demonstrates a stronger performance
in maintaining accuracy with increasing thickness/radius and thickness/wavelength ratios,
Without the inclusion of transverse correction factors, the HOT* results are less accurate
than the HOT formulation; it is noteworthy, however, that even without the shear cor
rection factor, HOT* provides more accurate predictions for 0 1 and 0 3 than FSDT.
The present theory, with the application of transverse correction factors, demonstrates
exceptional performance in high thickness cylindrical shell geometries when compared with
the exact solution.

6. CONCLUDING REMARKS

A new higher-order shell theory, which has analytic and computational advantages
over other theories of the same order of approximation, was developed for homogeneous

SAS ]2·22·B
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Table 5. Normalized natural frequencies for homogeneous orthotropic topaz
cylinders (m, n) = (1, 0), 2h/a = 1.0

2hjL EXACT HOT HOP FSDT CST

0, : Flexural Mode
0.00 0.0000 0.0000 0.0000 0.0000 0.0000
0.01 0.0879 0.0879 0.0879 0.0935 0.0902
0.1 0.8695 0.8692 0.8696 0.8886 0.8886
0.2 1.5040 1.5097 1.5091 1.5104 1.5109
0.3 1.7548 1.7663 1.7614 1.7771 1.8345
0.4 2.1252 2.1367 2.1317 2.1489 2.4078
0.5 2.6005 2.6059 2.6048 2.6171 3.1944

0,: Breathing mode
0.00 1.6532 1.6519 1.6460 1.6979 1.6980
0.01 1.6528 1.6666 1.6662 1.6975 1.6977
0.1 1.6338 1.6471 1.6452 1.6862 1.6930
0.2 1.8937 1.8995 1.8970 2.0007 2.0019
0.3 2.6981 2.6924 2.6991 2.8530 2.8533
0.4 3.4984 3.4749 3.5121 3.7704 3.7705
0.5 4.1118 4.0659 4.2059 4.6976 4.6977

0, : Thickness-shear mode
0.00 3.2710 3.2812 3.3029 3.2813
0.01 3.2730 3.2831 3.3048 3.2833
0.1 3.4446 3.4581 3.4813 3.4771
0.2 3.8679 3.8892 3.9179 3.9571
0.3 4.3962 4.4384 4.4800 4.5837
0.4 4.7137 4.9077 5.0892 5.2902
0.5 5.0576 5.2529 5.5615 6.0467

0 4 : Thickness-stretch mode
0.00 4.9547 4.7131 5.1901
0.01 4.9548 4.7131 5.1902
0.1 4.8939 4.7203 5.1970
0.2 4.7774 4.7456 5.2204
0.3 4.7170 4.8049 5.2711
0.4 5.0436 5.0693 5.3873
0.5 5.6297 5.6718 5.7986

orthotropic shells on the basis of assumed displacements and transverse strains. The inde
pendently assumed transverse shear and normal strains were derived in terms of dis
placement variables in two basic stages: (I) by enforcing physical transverse stress con
ditions to be exactly satisfied on the bounding shell surfaces; and (2) by making these
transverse strains to be least-squares compatible across the shell thickness with the cor
responding strains derived from the strain-displacement relations. The application of a
three-dimensional displacement-based variational principle resulted in a 10th-order shell
theory with associated five edge boundary conditions of the Poisson type. The theory is
formulated in terms of an orthogonal curvilinear coordinate system and thus permits the
analysis of various types of shells including, but not limited to, cylindrical, spherical and
conical.

The analytic predictions of the shell theory for the natural frequencies of free vibration
of isotropic and orthotropic cylindrical shells were found to be in close agreement with the
three-dimensional elasticity solutions. In addition to the modes of deformation available
in the first-order shear-deformable theory, the present theory incorporates two lowest
thickness-stretch modes. The ability to model these thickness-stretch modes may be par
ticularly important for laminated polymer-matrix composite shells, where the excitation of
thickness-stretch modes is often associated with delamination initiation and failure.
Naturally, the proposed theory provides a basic foundation for the development of a
laminated shell theory.

The proposed theory may be found to be particularly useful for application to finite
element analysis. The key appealing features are the low-order continuity requirements for
the kinematic variables of the theory and the standard engineering boundary conditions.
These characteristics permit formulations of simple and effective shell elements that are
fully compatible with standard finite element software. The utility of such finite elements
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has recently been demonstrated with its predecessor plate theory, on which basis an effective
faceted shell element has been developed and used in general-purpose finite element codes.
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APPENDIX A: DEFINITIONS OF s,

The coefficients s, (i = I, 2, ... , 10) in eqn (22) are defined as follows:

s, = P,a,+P,h; (i * 3,8)

sJ = 1',0, +P,bJ+ 1

s, = P,a,+P,b,+PJ,

where

1', = P,(O/h

1', = [P,(~)+ 14PJ(0)/85h

PJ = [168P,(()-28PJ(O)h/85

and P,(¢) (i = 1,2,3) are the Legendre polynomials

P,(~) = (3e -1)/2

P,(~) = W~' -3)/2.

The a, coefficients are defined as

a, = h'/R,(C,J/C13 )K;/2 (i = 1,2)

aJ = hJ/R,(K,/R,-KJ/h)(CI)/CJ.d/2+hJ/R,(K,/R,-K4/h)(C2J/C,,)/2

a J +; = (C,./C,,)/a,

a'+i = h'/R,(hK,-R,K>,)(C,J/Cn )/2

a, = h4/R, (4K,/5R I -2KJ/h)(C, J/C,,)/2 +h4/R,(4K,/5R, -2K4/h)(C"jC,,)/2

where the K, and Ki are defined as follows:

K; = I/(Ln' + I/(Li-)'

K, = l/(Ln' -I/(L,-)'

K>i = l/Li++ I/L,-

To obtain bi, replace Ki with f?, and K, with K; in a, (i = 1,2,3, ... ,10).

APPENDIX B: SHELL STRESS RESULTANTS

lV, = hf, (0', +O',s, L, )L, d~

lV, = hr,(0', +O'"s,L,)L, d~

lV, = h f', [(O',/R, +0',L,/L,R,)h~+O',sJL,]L2d~
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N" = h f' ,(r" +(J"S4 L , )L, d¢

N" = hf,(r" +(J"s,L,)L, d~

r,
M, = h J. ,«(J,h~+(J"S6L, )L, d~

M, = hf' «(J,h~+(J"sJL,)L,d~-,

Q, = 5h/4 f, r,JI-nL, d~

APPENDIX C: RESULTANTS OF PRESCRIBED EDGE TRACTIONS

tV, = h f' <1, L, d~
- ,

N, = hf,tJ,L, d~

IV" =hI', f'2L,d~

N" = hI', f"L, d~

Ai, =h'f' <1,L,~d~-,

Ai" = h' f, f2lL,~d~

Q,=hf.' f,,,L,d~-,

3255
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Q" = h f' f,,,{( -1/5)L, d~ = 0
• I

Q" = h f' f,,,(( -1/5)L, d~ = 0. ,

The last four terms vanish identically, according to the natural boundary conditions of eqn (33a), which
necessitate the prescribed shear tractions of the form shown by eqn (34).

APPENDIX 0: SHELL CONSTITUTIVE MATRICES

The components of the shell theory constitutive matrices, eqn (30), are given as

A" = h f, [C,,/L, +CI)S, +(C,,/L, +C"s,)s,L,]L, d~

A" = k,hf,[C"h~/L, R, +C"h~/L,R,+ C"s, + (C"h~/L, R, + C"h~/L,R, + C"s,)s, L,lL, d~

A" = hf,[C
"

S4 + C,h/ L , + (C"S4 + C,r,/L, ).1, L,]L, d¢

",
A" = h j ,[C,)S5 +C",/L, +(('"s,+C"IL,)s,L,]L, d¢

A" = hf,[C"IL, + C"S, + (C"IL, +C"s, )s,L,]L, d¢

A" = k,hf,[C"h¢IL , R, + C"h(/L,R, + C"s, + (Cl)h¢/L, R, +C"h~/L,R,+ C"s,)s,L,]L, d~

A" = kih f,[(CII h¢IL, R, +c"h~/L,R,+C"s,)h¢/R , + (C"h~/L, R , + C"h~/L,R, +C,)s))h~L,IR, L,

+(C,)h~/L,R , +C"h¢/L,R, +C"s,)s,L,]L, d~

A14 = k,hf,[(C".1 4 + C",IL, )h~/R, + (C"S4 + C'o/L, )h~L,IL,R,+ (C"S4 +C,,/L,)s,L , )]L, d¢

A" = k,hf i [(C"s, +C,r,/L,)h~/R,+(C"s; +C'0/L,)h~L1IL,R,+(C"s,+C,,/L,)s,L,l]L, d~

A 44 = hf I [Cnnl L , + (C"S4 +2C'61L, )S4 L ,]L, d¢

A" = hf I [Co,,/L +C16 s, + (C"s, + C,,,/L,)S4 L ,]L, d¢

Ass = h f, [Co,,/L, +(C"s, +2C,,,IL,)s,L,]L, d~

B
"

= hI' [C"h¢/L , +C"I"+(C,,h¢/L , +C"so)s,L,]L,d¢
- I
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B" = hf,' [C"h(/L +C"S, +(C"h~/L,+Cn s7)s,L,]L, d~
-,

B" = k4hf,(C"h'(('-1/5)/L, R, +C"h'((-1!5)/L,R,+C,ls,+[C" h'(('-1/5)/L,R,

+C"h'((' -1/5)!L,R, + C"S,]S, L,) L, d(

B" = hf' [C"h~!L,+ C,;s, + (C"h(/L + C ,J S7 ).I,L,]L, d(
-,

B" = k4h f', :C"h'(( - 1/5)!L, R, + C"h'(~' - I /5)/L, R, + C".I', + [C"h'(~' - I /5)/L, R,

B" = k ,hf,[(C"h(!L, + C" S7)h(.R, + (C"h(/L, + C"s,)h(L, !L,R, + (C"h(!L,

B" = k ,k4h f' aCII h'(( - Jl5);L, R, +C"h'«( -1/5)/L, R, + C".I',]h(/ R, + [C"h'W -1/5)/L, R,-,

+ C"h'(( -1:5);L,R, + C"s,]h(L,/L,R, + [C"h'(( -1/5)/L, R, + C"h'(( -1/5)/L,R,

+C"sJs,L, )L, d(
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B4, = hf' [(C"h(/L, +C,S,,)S4 L , +C,.h(/L, +C,,,s.]L, d(
-J

B., = hf' [(C"h(/L, +C",I',)S4 L , +C,.h(!L, +c,•.I',]L, d(-,

B4, = k4hf, aC"h'(( -1!5)!L, R, +C"h'((' -1/5)!L,R, +C,1S,]S4L, +C,.h'(( -1/5)/L, R,

+ C,.h'((' -1!5)/L,R, + C.,Ix)L, d(

B" = hf,' [C, •.I',o+C,,,h(.L,+(C,,SIl,+C,,h(/L,)S4L,]L, d~
-I
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B" = h f' [(C"h~/L, + C"s,)s,L, + C,"h~/L, + C,.s,]L , d~
-I

B" = h f' [C,.SIlI +C•• h~/L, + (C"s,o + C,.h~/L,)s,L,]L, d~
-I

D" = k 4h r ([C II h'(( -1/5)/L , R, + C"h'«( - 1/5)/L,R, + C"s,]h~+ [C"h'«( -1/5)/L, R,
.... -1

+ C"h'«( - 1/5)/L, R, + C".\·,]S6L,) L, d~

D" = h f', [(C"h~/L,+C"S7)h~+(C"h~/L,+CnS7)S7L,]L, d,:

+C"h'«(-1/5)/L,R,+C"s,]s,L,iL, d~

D'4 = h J' I [(C"'\·9+C,.h~/LI)h~+(C"s9+C,.h~/L,)s,L,]L, d~

+ [C"h'«( -1/5)/L, R, + C"h'«( -1/5)/L,R, + C"s,]s,L , }L, d~

D,. = k 4 hf,[(e"S9 + C,.h~/L, )h'(~' - 1/5)/R, + (C"S9 + C,.h~/L, )h'~L, /L,R,
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D,s = hf' [(C'6S'O+C6h~IL,)h~+(Cl1S1l1+C'6h~/L,)SIOL,]LId~-,

G'4 = k,k,h(5j4)' f, (I ~()'C., d~

G" = k;h(5/4)' fl (l-~')'C,L,:L, d~
-I
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Note the symmetry of the components: A'I = Ali' D'I = DJi and G'I = Gil'
The transverse correction factors, as determined in section 3, are k, = k, = n/jW,k, = n/l2, and

k4 = rc/JI7/252.

APPENDIX E: COEFFICIENTS OF STIFFNESS AND MASS MATRICES Key' AND M,y,

The stiffness matrix coefficients, eqn (38), are given by

K" = (A,,+A 54 ):xnja

K'4 = (B" +B54 )rw/a

K" = (B"ja-G,,)r;,
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Kn = D))h4
•

The non-vanishing mass matrix coefficients, eqn (38), are given by

M" =mo

M,s =hm,

M 2 :! = nl0

M,. = M,s

M JJ = !Hu

M). =m,

M 17 = -mo/5+m,

M 44 = h'm,

M" = M44

M flil =m2

M. 7 = -m,/5+m)

M n = mll/25-2m,/5+m4'

where the inertial coefficients, m,,(n = 0, 1, ... ,4), are defined as

m" = ph([l-( -1)"+ ']/(n+ 1)+ [1- (-I )""'](I/R, + I/R,)hf(n+2) + [1-( -1Y-+'WfR, R,(n+3)}.

Note: K,; = Kii and M" = Mii.


